3.194 \(\int \frac{x^m (a+b \sinh ^{-1}(c x))}{\sqrt{d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=161 \[ \frac{\sqrt{c^2 x^2+1} x^{m+1} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+1}{2},\frac{m+3}{2},-c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{(m+1) \sqrt{c^2 d x^2+d}}-\frac{b c \sqrt{c^2 x^2+1} x^{m+2} \text{HypergeometricPFQ}\left (\left \{1,\frac{m}{2}+1,\frac{m}{2}+1\right \},\left \{\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2\right \},-c^2 x^2\right )}{\left (m^2+3 m+2\right ) \sqrt{c^2 d x^2+d}} \]

[Out]

(x^(1 + m)*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*x^2)])/((
1 + m)*Sqrt[d + c^2*d*x^2]) - (b*c*x^(2 + m)*Sqrt[1 + c^2*x^2]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 +
 m/2, 2 + m/2}, -(c^2*x^2)])/((2 + 3*m + m^2)*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.192269, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {5764, 5762} \[ \frac{\sqrt{c^2 x^2+1} x^{m+1} \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};-c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{(m+1) \sqrt{c^2 d x^2+d}}-\frac{b c \sqrt{c^2 x^2+1} x^{m+2} \, _3F_2\left (1,\frac{m}{2}+1,\frac{m}{2}+1;\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2;-c^2 x^2\right )}{\left (m^2+3 m+2\right ) \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(x^m*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(x^(1 + m)*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*x^2)])/((
1 + m)*Sqrt[d + c^2*d*x^2]) - (b*c*x^(2 + m)*Sqrt[1 + c^2*x^2]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 +
 m/2, 2 + m/2}, -(c^2*x^2)])/((2 + 3*m + m^2)*Sqrt[d + c^2*d*x^2])

Rule 5764

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist
[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2], Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a
, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !GtQ[d, 0] && (IntegerQ[m] || EqQ[n, 1])

Rule 5762

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*x^2)])/(Sqrt[d]*f*(m + 1)),
x] - Simp[(b*c*(f*x)^(m + 2)*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -(c^2*x^2)])/(Sqrt
[d]*f^2*(m + 1)*(m + 2)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[d, 0] &&  !IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{x^m \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{d+c^2 d x^2}} \, dx &=\frac{\sqrt{1+c^2 x^2} \int \frac{x^m \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{1+c^2 x^2}} \, dx}{\sqrt{d+c^2 d x^2}}\\ &=\frac{x^{1+m} \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, _2F_1\left (\frac{1}{2},\frac{1+m}{2};\frac{3+m}{2};-c^2 x^2\right )}{(1+m) \sqrt{d+c^2 d x^2}}-\frac{b c x^{2+m} \sqrt{1+c^2 x^2} \, _3F_2\left (1,1+\frac{m}{2},1+\frac{m}{2};\frac{3}{2}+\frac{m}{2},2+\frac{m}{2};-c^2 x^2\right )}{\left (2+3 m+m^2\right ) \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0563458, size = 129, normalized size = 0.8 \[ \frac{\sqrt{c^2 x^2+1} x^{m+1} \left ((m+2) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+1}{2},\frac{m+3}{2},-c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )-b c x \text{HypergeometricPFQ}\left (\left \{1,\frac{m}{2}+1,\frac{m}{2}+1\right \},\left \{\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2\right \},-c^2 x^2\right )\right )}{(m+1) (m+2) \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^m*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(x^(1 + m)*Sqrt[1 + c^2*x^2]*((2 + m)*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*
x^2)] - b*c*x*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -(c^2*x^2)]))/((1 + m)*(2 + m)*Sq
rt[d + c^2*d*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.323, size = 0, normalized size = 0. \begin{align*} \int{{x}^{m} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ){\frac{1}{\sqrt{{c}^{2}d{x}^{2}+d}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

[Out]

int(x^m*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )} x^{m}}{\sqrt{c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(c*x) + a)*x^m/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )} x^{m}}{\sqrt{c^{2} d x^{2} + d}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b*arcsinh(c*x) + a)*x^m/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} \left (a + b \operatorname{asinh}{\left (c x \right )}\right )}{\sqrt{d \left (c^{2} x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*(a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**m*(a + b*asinh(c*x))/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )} x^{m}}{\sqrt{c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)*x^m/sqrt(c^2*d*x^2 + d), x)